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Abstract 

In the paper, the transfer learning technique is applied to 
Deep Neural Networks (DNNs) used as surrogate model 
for the evaluation of an Interior Permanent Magnet (IPM) 
motor performances. Specifically, the cogging torque is 
considered, with constraints on the running torque. 
Several ways of applying transfer learning are 
investigated and the results are given in terms of 
accuracy and reduction of computational costs. 

1 Introduction 

Deep learning is becoming popular in electromagnetics, 
for solving both direct and inverse field problems. 
However, several capabilities of deep learning are not 
exploited neither extensively investigated in literature. 
For the sake of an example, transfer learning is a 
powerful technique for re-utilizing a Neural Network (NN), 
previously trained on a problem or dataset, for solving a 
new problem or with a different dataset. 

Transfer learning is particularly suitable when the 
database creation is very time-consuming like it happens 
with field problems solved by means of the Finite Element 
Method (FEM). 

Nowadays, numerical simulations of electromagnetic 
devices is of paramount importance for the evaluation of 
the quantities like forces, torques, losses. Specifically, 
the evaluation of the performances of motors is more and 
more required, in view of new and challenging 
applications like electric vehicles. For instance, Interior 
Permanent Magnet (IPM) machines are used for high-
performance application such as electric vehicles 
traction. In order to improve the performances of this kind 
of motors, many requirements can be defined. In 
particular, a lightweight, compact, efficient in terms of low 
iron losses, high running torque but low ripple torque 
motor are just as few design requirements. In the paper, 
an IPM motor, like the one studied in [1], is considered as 
a case study. The cogging torque is evaluated by means 
of a surrogate model and several transfer learning 
techniques are applied and investigated. The final aim is 
to find a surrogate model which is not too much time 
consuming to train and still accurate enough. Transfer 
learning opens the way to train a model step by step, until 
the desired accuracy has been achieved. 

2 Case study 

The Interior Permanent Magnet (IPM) motor considered 
as a case study is a 4-pole 24-slot brushless DC motor. 
The permanent magnets are made of Neodymium Iron 
Boron material while the rotor and stator are made of  
laminated steel. The outer radius is 56 mm. There are 8 
coils per each of the three phases, fed by a sinusoidal 
current of 3 A at 50 Hz.  

In order to evaluate and possibly increase the motor 
performance, five parameters, relevant to the rotor 
geometry, are considered. Specifically, they are: width d, 
length l and position h of the magnets, respectively, 
thickness b of the bridge and its orientation 𝛼, see Fig. 1.  

Each parameter can vary in an admissible range as 
shown in Table I. 

Design 
variable 

d [mm] l [mm] h [mm]  b [mm]  [deg 

lower 
upper 

1 
3 

10 8 0.5 1 

22 12 2 5 

Table 1: Variation range for the motor parameters. 

A parametrized 2D Finite Element (FE) model of the 
motor, with a sweep length in the third z-direction equal 
to 65 mm, has been built in Simcenter Magnet [2]. Based 
on the model, both running and cogging torque are 
calculated, considering 90 degrees of rotor rotation 
(torque-angle curves). A magnetic induction field map, 
flux lines and motor parameters are shown in Fig. 1. 

 

Figure 1: Magnetic induction field map and flux lines. 
Geometrical parameters of the IPM are highlighted. 
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3 DL models 

In order to train the NNs that will be utilized as surrogate 
models for the calculation of the motor performances, a 
database of FE solutions has been built. Specifically, 
many geometries, randomly sampled in a feasible region, 
are evaluated by means of the FEM model. In order to 
obtain feasible motors from the practical viewpoint, 
motors characterized by a running torque lower than e.g. 
0.35 Nm have been taken out from the database. For 
each solution, the values of both geometrical parameters 
and running and cogging torques are stored in the 
database. 

Deep Neural Networks (DNNs), feed-forward and fully 
connected, are used for the prediction of the cogging 
torque. The architecture of the synthesized DNNs is 
described in Table 2. 

Layers 

1) Input (size 5×1) 
2) Fully connected layer (30 neurons) 

3) Sigmoid activation function 

4) Fully connected layer (10 neurons) 

5) Sigmoid activation function 

6) Fully connected layer (1 neuron) 

Table 2: DNN architecture. 

The DNN is trained first with a database, namely DB1, of 
a given number of samples, e.g. 500 samples. The 
trained DNN is called DNN1. Once DNN1 is trained, 
transfer learning is done from DNN1 to another DNN 
called DNN2 with the same architecture as in Table 2. 
The following techniques will be investigated: 

1) freezing the weights of a layer, the other layers 
of DNN1 are trained with a new database DB2 of 
e.g. 500 samples; 

2) initializing the weights of DNN2 with those of 
DNN1 and then DNN2 is trained with the new 
database DB2. 

Both DNNs are trained with 80% of the database used for 
training, i.e. 400 samples, and 20%, i.e. 100 samples, 
used for validation. The test set is composed of 100 
samples, never used for training neither for validation.  

The Mean Absolute Percentage Error MAPE 

MAPE = 100
1

𝑁
∑
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𝑁
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where Y is the vector of N true values calculated with FE 

model, and  �̂� is the vector of N values predicted by the 
DNN2 is calculated for evaluating the accuracy of DNN2 
predictions.  

4. Results 

The training of DNN1 is repeated 10 times and the MAPE 
error calculated for the test set is equal to 7.4% as an 
average over the 10 runs. In Fig. 2, true versus predicted 

values of the test set are plotted, with reference to one of 
the runs. 

 

Figure 2: True versus predicted cogging torque values. 

The results show that the prediction is in general 
accurate, because the MAPE error is acceptable. It is 
possible to state that there are regions in Fig. 2 where the 
prediction is more accurate than in others. For the sake 
of an example, the prediction seems to be accurate for 
high values of the cogging torque, but definitely less 
accurate for low values of the cogging torque, and this 
could well be a challenging aspect to deal with. It is 
important to be accurate in the evaluation of low values 
of cogging torque because these are preferable solutions 
from the designer viewpoint. On the other hand, however, 
low values of the cogging torque are usually related to 
low values of running torque [1], because the two 
performances are in contrast. 

In the full work, different strategies will be applied and 
compared in order to highlight the best procedure of 
transfer learning applied to IPM motor case-study, aim to 
better identify the values of cogging torque in the low 
range. 
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